Automated Simulation Validation

B. Roungas[@]*

[®]v.roungas@tudelft.nl, *Department of Multi-Actor Systems, Delft University of Technology, The Netherlands

Aim

Building an automated or semi-automated procedure for validating simulation environments, similar to what unit testing is for verification. Particularly useful when the simulation environment is updated regularly.

Application

Case Study: Railway sector Purpose: Punctuality & Safety

Data

Transformations

- **Data Cleaning:** Automatic match of train series and stations between simulated and operational data, Automatic exclusion of data with insufficient information.
- Name & Unit Conventions: Automatic name conversion of variables based on knowledge and content, Automatic conversion of minutes in seconds or calculation of delays based on planned and actual time.

Outlier Detection: Automatic detection and exclusion of unpredictable or suspicious delays.

Model

Requirements: Automatic checks of consistency between simulated and operational output.

Criteria for accepting Validity: Automatic input of acceptability criteria.

Type I & II error: Automatic mitigation of Type I & II error by multiple replications of the experiment.

Software

Reductio ad absurdum: Automatic detection of the common denominator among different models.

Conclusion

Front-end and back-end technologies, along with a statistical language can enable us building automated solutions for validating simulation data, models, and software environments.

